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Abstract
We study centred second order in time and space discretizations of the inviscid
Burgers equation. Although this equation in its continuum formulation supports
non-smooth shock wave solutions, the discrete equation generically supports
smooth solitary wave solutions. Using backward error analysis we derive the
modified equation associated with the numerical scheme. We identify three
different equations, the Korteweg–de Vries (KdV) equation, the Camassa–
Holm (CH) equation and the b = 0 member of the b-family. Solutions of the
first two equations are solitary waves and do not converge to the shock solutions
of the Burgers equation. The third equation however supports solutions which
strongly approximate weak solutions of the Burgers equation. We corroborate
our analytical results with numerical simulations.

PACS numbers: 47.11.−j, 47.11.Bc, 47.35.Fg, 47.40.−x
Mathematics Subject Classification: 35Q51, 35Q53, 65M06, 37Kxx

1. Introduction

The inviscid Burgers equation

∂u

∂t
+ c

∂u

∂x
+ µu

∂u

∂x
= 0 (1)

is the prototype equation for a shock-developing system [3, 13, 22]. An arbitrary smooth
initial condition will develop a singularity of its gradient in finite time. The solution consists
of one or more isolated shocks connected by smooth ramps. The equation involves linear and
nonlinear advection. The nonlinear advection is responsible for the steepening. The strength
of the nonlinearity is measured by the parameter µ.

The occurrence of shock waves makes numerical integration of the Burgers equation
particularly difficult. For the continuum Burgers equation (1) several attempts have been
made to study so-called regularized equations which support smooth regularized solutions.
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We distinguish here between viscously and dispersively regularization procedures. Whereas
the viscously regularized Burgers equation

ut + cux + µuux = νuxx (2)

supports solutions which in an L1-sense converge strongly to weak solutions of the Burgers
equation for ν → 0, conservative dispersively regularized equations such as the Korteweg–de
Vries (KdV) equation [17]

ut + cux + µuux + βuxxx = 0 (3)

and the Camassa–Holm (CH) equation [6]

ut + cux + µuux + βuxxx − α2uxxt + 2
3α2µuxuxx + 1

3α2µuuxxx = 0 (4)

support localized solitary waves. These dispersively regularized equations approximate the
initial development of a smooth initial condition of the Burgers equation (1) until the solution
develops into a weak shock solution. Then the approximation breaks down. The presence of
linear dispersion in (3) and (4) balances the nonlinear steepening and gives rise to the formation
of solitary waves. A recently introduced dispersive regularization, the b = 0 member of the
b-family [7]

ut + µuux − α2uxxt − α2µuuxxx = 0 (5)

does not contain linear dispersive terms. In contrast to the KdV equation and the CH equation
its solutions have been shown to strongly approximate weak solutions of the Burgers equation
[2]. As opposed to viscously regularized equations such as (2), dispersively regularized
equations such as (5) redistribute energy via nonlinear interactions rather than simply by
dissipation. This has obvious advantages for long-time integration where artificial energy
dissipation will have a significant effect.

In the following, we investigate finite-differencing methods to discretize (1) and study
their solutions. We show that centred finite-difference equations of the Burgers equation lead
to dispersive regularizations. The fact that discretization schemes of the Burgers equation can
lead to dispersive regularizations had been previously studied [14] for semi-discretizations
where time is kept continuous and only space is discretized. Here, we study fully discretized
difference equations and determine under what conditions on the discretization the numerical
scheme approximates the KdV equation, the CH equation or the b = 0 member of the b-family.
It turns out that solutions of symmetrically discretized numerical schemes generically do not
consist of isolated nonsmooth shock waves but rather of smooth solitary waves, and only for
special values of the discretization may approximate weak shock solutions. In section 2, we
present the numerical discretization under consideration. The resulting discretized equations
are then analysed in section 3 by means of backward error analysis to derive the associated
modified equations. In sections 3.1–3.3, we investigate the three cases when the modified
equation is the KdV equation, the CH equation and the b = 0 member of the b-family,
respectively. We conclude with a discussion in section 4.

2. Numerical discretization scheme

The inviscid Burgers equation (1) is solved on a spatial box of length L with N equally spaced
grid points xj = j�x with grid spacing �x = L/N . The temporal discretization is performed
with a constant time-step �t . We study here second order in time and space centred finite-
differencing schemes [11, 19]. In the following, we introduce general discretization schemes
for all terms of (1) which will allow for either explicit schemes or semi-implicit Crank–
Nicolson schemes.
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The temporal derivative is symmetrically discretized up to second order in �t as

∂u

∂t

∣∣∣∣
t=n�t,x=j�x

= un+a
j − un−a

j

2a�t
. (6)

Superscripts denote temporal discretization and subscripts denote spatial discretization. One
could also have included symmetric spatial averaging in (6), but we find that this is not
necessary for our purposes. The linear advection term is discretized by means of a centred
spatial differencing and centred temporal averaging to assure second-order accuracy in �x

and �t

c
∂u

∂x

∣∣∣∣
t=n�t,x=j�x

= c

2

(
un+b

j+s − un+b
j−s

2s�x
+

un−b
j+s − un−b

j−s

2s�x

)
. (7)

The nonlinear advection term is discretized similarly up to second order in space and time
according to

µu
∂u

∂x

∣∣∣∣
t=n�t,x=j�x

= 1

2
µ

(
1

2

(
un+d

j+y + un+d
j−y

)un+d
j+z − un+d

j−z

2z�x
+

1

2

(
un−d

j+y + un−d
j−y

)un−d
j+z − un−d

j−z

2z�x

)
.

(8)

The Burgers equation (1) discretized using (6)–(8) can be solved for un+a
j either explicitly or

by matrix inversion in the case that the choice of a, b and d implies an implicit scheme.

3. Backward error analysis and the modified equation

The idea of backward error analysis (see, for example, [11]) is that a numerical scheme for
(1) such as the scheme (6)–(8) is not solving the original equation—in our case the Burgers
equation (1)—but rather approximates up to a certain order in �x and �t a so-called modified
equation. To derive the modified equation for the above scheme we use Taylor expansions of
un

j . In particular, we evaluate

uj±k = uj ± k�x(ux)j + 1
2k2�x2(uxx)j ± 1

6k3�x3(uxxx)j + O(�x4), (9)

where u is evaluated at a fixed point in time, let us say at t = n�t , and analogously

un±l = un ± l�t (ut )
n + 1

2 l2�t2(utt )
n ± 1

6 l3�t3(uttt )
n + O(�t4), (10)

where u is evaluated at a fixed spatial grid point, let us say at xj = j�x. We consider
here discretizations O(�x) ∼ O(�t) and also restrict ourselves in the following to small
amplitude waves with O(µ) ∼ O(�x). Using the Taylor expansions (9) and (10) for un

j

we can rewrite the individual discretizations (6)–(8) in terms of the continuous spatial and
temporal derivatives of u. First (6) is expanded as

∂u

∂t

∣∣∣∣
t=n�t,x=j�x

= ut +
1

6
a2�t2uttt + O(�t4) (11)

here and in the following the right-hand side is evaluated at time t = n�t and spatial location
x = j�x. Similarly (7) becomes

∂u

∂x

∣∣∣∣
t=n�t,x=j�x

= ux +
1

6
s2�x2uxxx +

1

2
b2�t2uttx + O(�x4,�t4), (12)
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and (8)

µu
∂u

∂x

∣∣∣∣
t=n�t,x=j�x

= µuux + µ

(
1

6
z2�x2 +

1

2
c2d2�t2

)
uuxxx

+ µ

(
1

2
y2�x2 +

3

2
c2d2�t2

)
uxuxx + O(�x4,�t4,�x2�t2, µ2�x2, µ2�t2),

(13)

To obtain the last equation we substituted the zeroth-order equation ut = −cux back into the
equation. We summarize and write the modified equation for our discretization (6)–(8) as

ut + cux + µuux = − 1
6a2�t2uttt − 1

2cb2�t2uttx − 1
6cs2�x2uxxx

−µ
(

1
2y2�x2 + 3

2c2d2�t2
)
uxuxx − µ

(
1
6z2�x2 + 1

2c2d2�t2
)
uuxxx

+O(�x4,�t4,�x2�t2, µ2�x2, µ2�t2). (14)

This modified equation differs from the original Burgers equation by additional linear and
nonlinear dispersive terms. The nonlinear dispersive terms are of the same form as the
nonlinear dispersive terms of the Camassa–Holm equation (4). The exclusive occurrence
of dispersive terms is due to our scheme being centred in time and space. If we had used
non-centred methods in time or space we would have obtained either damping or amplifying
terms depending on the scheme. We may express time derivatives as space derivatives using
the lowest order balance ut + cux = O(µ,�x2,�t2) to realize that at O(µ,�x2,�t2) the
modified equation is the KdV equation (3). In the following, we will investigate the influence
of the higher-order terms.

Inspection of the modified equation (14) suggests that we may expect to obtain
the three dispersively regularized equations of interest for us as modified equations at
O(�x4,�t4,�x2�t2, µ2�x2, µ2�t2), namely the Korteweg–de Vries (KdV) equation (3),
the Camassa–Holm (CH) equation (4) and the b = 0 member of the b-family (5). In the
following, we show that for specific discretizations, i.e. appropriate values of a, b, d, y, z and
�x and �t , one may obtain discretizations whose associated modified equations coincide with
each of these three dispersively regularizations of the inviscid Burgers equation (1).

In order to do so we need to substitute the various temporal derivatives occurring in
the modified equation (14), in particular the terms uttt and uttx . For example, the KdV
equation (3) does not contain any term of the form uxxt , whereas the CH equation (4) and
the nonlinearly regularized Burgers equation (5) do. We partially substitute occurring time
derivatives by the first-order approximation ut = −cux −µuux . We introduce a free parameter
q which controls the splitting of the temporal derivatives. We write

uttt = q(−c3uxxx − 3µc2 (3uxuxx + uuxxx))

(1 − q)(c2uxxt − 2µc2(3uxuxx + uuxxx)). (15)

The remaining temporal derivative uttx in (14) can be fully substituted as

uttx = c2uxxx + 2µc(3uxuxx + uuxxx). (16)

It turns out that the free parameter q is sufficient and one does not need to introduce further
free parameters to only allow for partial substitutions of temporal derivatives in uttx and uxxx .
Inserting (15) and (16) into (14) we obtain

ut + cux + µuux + C(uxxx)uxxx + C(uxxt )uxxt + C(uxuxx)uxuxx + C(uuxxx)uuxxx = 0, (17)

with

C(uxxx) = 1
6 s2c�x2 − 1

6qa2c3�t2 + 1
2b2c3�t2 (18)
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C(uxxt ) = 1
6 (1 − q)a2c2�t2

= 1
c
C(uxxx) − 1

6 s2�x2 + 1
6a2c2�t2 − 1

2b2c2�t2 (19)

C(uxuxx) = − 1
2µ(2 + q)a2c2�t2 + 3µb2c2�t2 + 3

2µd2c2�t2 + 1
2µy2�x2 (20)

C(uuxxx) = − 1
6µ(2 + q)a2c2�t2 + µb2c2�t2 + 1

2µd2c2�t2 + 1
6µz2�x2

= 1
3C(uxuxx) + 1

6µ(z2 − y2)�x2. (21)

It is this form of the modified equation we will be working with from now on.

3.1. Korteweg–de Vries equation

In this section, we show that one can choose the parameters of the discretization of (6)–(8) in
such a way that its associated modified equation (17) is the famous KdV equation (3) which
we recall here

ut + cux + µuux + βuxxx = 0.

Inspection of (17) reveals that any numerical scheme and its dispersive regularization
approximates the KdV equation up to O(µ�x2, µ�t2), and effectively simulates the KdV
equation rather than the Burgers equation (1). Our aim here is to determine the conditions for
a numerical scheme that approximates the KdV equation up to O(�x4,�t4, µ2�x2, µ2�t2).
To obtain (3) as the modified equation up to this order we need to choose our discretization
scheme and our free parameter in order to assure

C(uxxt ) = 0, C(uxuxx) = 0, C(uuxxx) = 0.

These conditions translate to

q = 1 (22)

−(2 + q)a2A2 + 6b2A2 + 3d2A2 + y2 = 0 (23)

y = z, (24)

where we introduced

A2 = c2 �t2

�x2
. (25)

Note that A2 � 1 is required for numerical stability as a Courant–Friedrichs–Levy condition.
This assures that the numerical scheme with discretization �x and �t is able to resolve
processes which propagate with the physical wave speed c. Condition (23) yields

A2 = 1

3

y

a2 − 2b2 − d2
� 1. (26)

Any numerical scheme which satisfies 0 < A2 � 1 with A2 given by (26) together with y = z

has the KdV equation with linear dispersion

β = c
�x2

6
(s2 − a2A2 + 3b2A2),

as its modified equation up to O(�x4,�t4, µ2�x2, µ2�t2). For example, for a given
numerical scheme with given �x and �t that satisfies (24) and the inequality (26), one
may choose the linear advective speed c such that A2 = c2�t2/�x2. One may similarly
prescribe c and �x (�t), which then subsequently fixes �t (�x) to satisfy condition (26).
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Figure 1. Left: plot of the solitary wave (27) for the numerical scheme for the Burgers
equation (6)–(8) with a = 2, b = 1, d = 0, z = y = s = 1 corresponding to the KdV equation.
We use �x = 0.08 for the spatial discretization on a ring with L = 80. Equation parameters are
µ = 0.1 and c = 1 which implies �t = 0.0327. Right: plot of the maximal amplitude umax of the
solitary wave as a function of time. The solitary wave solution retains amplitude and shape.

The Korteweg–de Vries equation is integrable, supports smooth solutions and its initial
value problem is solvable via the inverse scattering transformation [1]. In particular,
equation (3) supports a one-parameter family of soliton solutions of the form

u(x − csolt) = a sech2(w(x − csolt)), (27)

with amplitude

a = 12
β

µ
w2 (28)

and speed

csol = c + 4βw2. (29)

The existence of solitons crucially depends on the balance of the nonlinear steepening provided
by uux and the linear dispersion uxxx . The linear dispersion can be attributed entirely to the
numerical scheme with β = β(�x2). Hence these solitary waves are spurious in the sense
that the continuum system (1) does not support them and they are purely an artefact of the
chosen numerical integration scheme.

Note that the constant advection with c �= 0 is crucial for the existence of the linear
dispersive term C(uxxx) of the modified equation. If we initially had transformed into the
system moving with the constant advection velocity c by introducing ξ = x − ct to eliminate
the cux term, there would be no linear dispersive terms in the modified equation (17).

To illustrate the effect of the discretization and the modified equation we look at a particular
example. We choose a = 2, b = 1, d = 0 and z = y = s = 1, which makes the numerical
scheme (6)–(8) explicit. Condition (23) is satisfied with 0 < A2 = 1/

√
6 < 1 assuring a stable

scheme. This choice of parameters implies for the linear dispersion coefficient β = 5c�x2/36.
In figure 1, we show results from a numerical simulation of the scheme (6)–(8) for the Burgers
equation for periodic boundary conditions. The results clearly show that the KdV equation is
the modified equation and that the solitary wave (27) is the appropriate solution.

To illustrate this further we look at the two-soliton solution of (3) parameterized by w1

and w2 [16, 21]

u(x, t) = 12
β

µ

(
w2

1 − w2
2(

w1 coth
(
w1

(
x − L

2

)) − w2 tanh
(
w2

(
x − L

2

)))2

)

×
(

w2
1

sinh2
(
w1

(
x − L

2

)) +
w2

2

cosh2
(
w2

(
x − L

2

))
)

. (30)
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Figure 2. Plot of the maximal amplitude as a function of time for the two-soliton solution (30) of
the KdV equation. We use the same numerical scheme and the same parameters as in figure 1.

In a periodic box, the two solitary waves elastically interact. In figure 2, we show the maximal
amplitude which is constant for the times when the two solitons are well separated and drops
when they interact.

3.2. Camassa–Holm equation

In [6], the Camassa–Holm equation (4) which we recall as

ut + cux + µuux + βuxxx − α2uxxt + 2
3α2µuxuxx + 1

3α2µuuxxx = 0

was introduced to describe shallow water waves. It has been derived in an asymptotic
multiscale expansion for water waves [8, 9]. The order of the asymptotic approximation
is one order better compared to the KdV equation. As with its lower-order cousin the CH
equation is integrable [8].

In [9, 20] solutions of (4) were investigated. The CH equation (4) supports solitary waves,
periodic waves, peakons for which the first derivative is discontinuous, and cuspons for which
the first derivative has a singularity.

We first focus on the one-parameter family of solitary travelling waves—parametrized by
the wave speed csol—which is given by

u(τ) = 3
δ

µ
sech2

√
δ

2
τ , (31)

where δ = csol − c. The spatial dependence of the solitary wave solution is parametrized by
the variable τ . The relation between τ and x is given by the Sundman transformation

dx

dτ
=

√
β + α2csol − α2δ sech2

√
δ

2
τ , (32)

which can be explicitly solved to yield

x(τ) = 2

√
β + α2csol

δ
sinh−1

⎛
⎝

√
β + α2csol

β + α2c
sinh

√
δ

2
τ

⎞
⎠

− 2
√

α2 tanh−1

⎛
⎝√

α2δ
tanh

√
δ

2 τ√
α2δ tanh2

√
δ

2 τ + β + α2c

⎞
⎠ . (33)

For the regularizing case α2 > 0 the conditions for a travelling wave are [9]
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δ > 0 (34)

β + α2c > 0. (35)

In this section, we write the conditions such that the numerical scheme (6)–(8) contains the
CH equation (4) as its modified equation (17). Using scaling transformations of u, x and t,
the coefficients of the CH equation may be changed. However, in [10] it was shown that the
following conditions for its coefficients are essential for integrability of the CH equation (4):

C(uxuxx) : C(uuxxx) = 2 : 1 (36)

C(uxxt )C(uux) : C(uuxxx)C(ut ) = 3 : 1. (37)

Moreover, we require α2 to be positive. Identifying α2 = −C(uxxt ) this amounts to

C(uxxt ) < 0. (38)

Using the definitions for the coefficients (18)–(21) conditions (36)–(38) can be written as

−(2 + q)a2A2 + 6b2A2 + 3d2A2 = 2z2 − 3y2 (39)

(7 + 2q)a2A2 − 18b2A2 − 9d2A2 = 3z2 (40)

1 − q < 0, (41)

where again A2 is defined by (25) and is subject to the Courant–Friedrichs–Levy stability
condition

0 < A2 � 1. (42)

Note that we have the additional restriction csol�t/�x � 1 to assure that the solitary wave
propagation can be resolved by the numerical scheme. Combining (39) and (40) we obtain

3a2A2 − 6b2A2 − 3d2A2 = 7z2 − 6y2. (43)

Combining conditions (39) and (41) we obtain

3a2A2 − 6b2A2 − 3d2A2 + 2z2 − 3y2 < 0,

which together with (43) implies

z < y. (44)

Rewriting (43) we find

A2 = 1

3

7z2 − 6y2

a2 − 2b2 − d2
, (45)

which further constraints the admissible parameters for the discretization because 0 < A2 � 1
is required as the Courant–Friedrichs–Levy condition. For each admissible combination of
discretization parameters we may calculate the free parameter q from (40) as

q = − 1

2a2A2
(7a2A2 − 18b2A2 − 9d2A2 − 3z2), (46)

with the additional constraint (41) requiring that q > 1. This defines the numerical scheme
for the modified equation to be the CH equation (4).

If we are additionally interested in the solitary wave solution (31) we need to further
satisfy conditions (34) and (35). Identifying β = C(uxxx) conditions (34) and (35) can be
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Figure 3. Left: plot of the solitary wave (31) for the numerical scheme for the Burgers
equation (6)–(8) with a = 3, b = 3, d = 0, z = 1, y = 2, s = 1 and q = 98/17 corresponding to
the CH equation. We choose �x = 0.1. The equation parameters are µ = 0.1 and c = 1.1 which
imply �t = 0.0721. Right: plot of the maximal amplitude umax of the solitary wave as a function
of time.

written as

csol − c > 0 (47)

s2 − a2A2 + 3b2A2 > 0. (48)

If the conditions for the validity of the CH equation (44)–(46) are satisfied we expect the
numerical scheme (6)–(8) to model the CH equation up to O(�x4,�t4, µ2�x2, µ2�t2). If
additionally the conditions for the existence of travelling waves for the CH equation (47) and
(48) are satisfied, we expect the numerical scheme (6)–(8) to support the solitary wave (31).
For example, a = 3, b = 3, d = 0, z = 1, y = 2 and s = 1 is such a choice of parameters
and implies q = 98/17 and A2 = 17/27 < 1. Because a = b = 3 we may write the scheme
as a one-step scheme. For these parameters the numerical scheme (6)–(8) is semi-implicit,
which is unconditionally stable [19]. We solve the system of equations numerically using
LU-decomposition.

In figure 3, we show results from a numerical simulation of the scheme (6)–(8) for the
CH equation, again for periodic boundary conditions. As for the KdV equation we see clearly
that the modified equation is the CH equation and the numerical scheme preserves the solitary
wave solution (31).

In the remainder of this section we investigate peakon solutions of the CH equation.
Condition (35), which we may rewrite as C(uxxx) > cC(uxxt ), restricts the solutions of the
CH equation (4) to the smooth solitary wave solution (31). For C(uxxx) = cC(uxxt ), however,
so-called peakons are supported for which the first derivative is not continuous. The CH
equation in the peakon limit reads as

ut + cux + µuux − α2uxxt − cα2uxxx + 2
3α2µuxuxx + 1

3α2µuuxxx = 0, (49)

which we have cast here in the form where we moved into a frame of reference moving with
speed −c. This equation only involves nonlinear dispersion, and supports a one-parameter
family of solutions u = c exp(|x − ct |). The numerical scheme (6)–(8) have the peakon
equation (49) as its modified equation for the choice of parameters a = 7, b = 4, d = 2,

s = 1, y = 16 and z = 15 implying A2 = 1. However, we found that this explicit scheme is
numerically unstable.
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3.3. Regularized Burgers equation

Whereas the KdV equation and the CH equation are regularizing the Burgers equation by their
inherent linear dispersion, the b = 0 member of the b-family (5) which we recall

ut + µuux − α2uxxt − α2µuuxxx = 0,

does not contain any linear dispersive terms [7]. In [2] it was shown that solutions of
this equation strongly converge to weak solutions of the Burgers equation. The particular
mechanism of regularization can be seen best if we write this equation as

vt + µuvx = 0 where u = (1 − α2∂xx)
−1v. (50)

This is analogous to the regularization used in α-Euler models [4, 5, 15] in which the advecting
velocity is smoothed with respect to the advected velocity. As in α-Euler models the smoothing
is performed by an inverse Helmholtz operator.

To allow for the asymptotic resubstitutions of temporal derivatives (15) and (16) which
were used to obtain (18)–(21) we move in a frame of reference moving with −c and write (5)
as

ut + cux + µuux − α2uxxt − cα2uxxx − α2µuuxxx = 0. (51)

We now ask the same question as before for the KdV equation or the CH equation. Can
we find a numerical discretization, i.e. parameters for the temporal discretization a, b, d and
for the spatial discretization s, y and z, and a free parameter q such that (51) is the modified
equation for (6)–(8). In particular, we require

C(uxuxx) = 0 (52)

C(uuxxx) = µC(uxxt ) < 0 (53)

C(uxxx) = cC(uxxt ). (54)

From condition (54), which we have already encountered for the peakon equation (49), we
deduce that

s2 − a2A2 + 3b2A2 = 0, (55)

where A2 is again defined via (25). Using (18)–(21) condition (52) implies

C(uuxxx) = 1
6µ(z2 − y2)�x2. (56)

Since according to condition (53) we have C(uuxxx) < 0 we need to impose

y > z. (57)

Condition (52) reads as

−(2 + q)a2A2 + 6b2A2 + 3d2A2 + y2 = 0. (58)

Condition (53) together with (56) reads as

z2 − y2 − s2 + qa2A2 − 3b2A2 = 0, (59)

which together with (58) results in

−s2 − 2a2A2 + 3b2A2 + 3d2A2 + z2 = 0. (60)

Combining (55) and (60) we obtain the condition for our discretization parameters by
eliminating A2 as(

s2 − 1
3z2

)
a2 + (z2 − 2s2)b2 − s2d2 = 0, (61)
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Figure 4. Simulation of the numerical scheme for the Burgers equation (6)–(8) with a = 2, b =
0, d = 1, z = 3, y = 4, s = 1 and q = 2.75. We chose �x = 0.025. The equation parameters
were µ = �x = 0.025 and c = 1 which implies �t = 0.025 and α2 = 0.000 73. Upper left:
initial condition u(x, t = 0) = 0.5sech2(x − L/2) with L = 20. Upper right: u(x, t) at a later
time t = 300. Lower left: u(x, t) at a later time t = 1600. Lower right: as in the lower left
figure but now with half the grid size �x = 0.0125 which implies α2 = 0.000 18. During the time
between two consecutive snapshots the wave has performed several revolutions across the periodic
box.

and may also determine

A2 = 1

3

z2 − 3s2

b2 − d2
� 1. (62)

Given a solution of (61) satisfying the stability constraint (62) the free parameter for the
resubstitution of the temporal derivatives can be calculated directly from, for example, (59) as

q = 1

a2A2
(s2 + 3b2A2 + y2 − z2). (63)

One possible choice of parameters satisfying (61) and (62) is

a = 2, b = 0, d = 1, s = 2, z = 3, y = 4, (64)

which implies A2 = 1. In figure 4, we show results from a numerical realization of this
discretization scheme. Due to the spatial discretization s �= z �= y there are three subgrids
which evolve independently. We therefore perform after every 20 time steps a spatial averaging
according to uj = (uj−1 + 2uj + uj+1)/4. Note that this introduces some small artificial
viscosity to the scheme. Therefore, the actual numerical scheme associated with this spatial
averaging deviates from the discretization scheme (6)–(8). Hence the modified equation
deviates slightly from the b = 0 member of the b-family (51). However, if the same amount
of spatial averaging is applied to discretization schemes whose associated modified equations
are the KdV equation or the CH equation, no weak shock solutions develop but the dynamics
is still dominated by (now damped) solitary waves and their near-elastic interaction. In those
cases the damping associated with the spatial averaging is simply a small perturbation to the
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otherwise integrable nonlinear wave equations which support smooth solitary wave solutions.
Hence the introduced viscosity does not simply transform the modified equation into the
viscously regularized Burgers equation (2), but rather stabilizes the dispersively regularized
equation (51). We have further checked this by letting the parameters of the numerical scheme
associated with (51) vary slightly. For example, for �t → 0.9�t	 (for fixed �x) where �t	 is
the temporal spacing consistent with (52)–(54), one observes solitary waves emanating from
the initial pulse condition rather than weak shock solutions as depicted in figure 4. This is
consistent with our analytical findings of section 3.1.

As can be seen from (56) one can control the value of α2 by increasing y. For example,
if all parameters are kept as in figure 4 a value of y = 5 leads to α2 ≈ 1.6�x. However,
one does not observe a sharper and sharper shock front for smaller values of the smoothing
length α2 as expected from the theory [2]. We have tested the shape of u for different values
of α2 and found no difference. This suggests that the viscosity associated with the averaging
is the important dynamical mechanism to produce regularized shocks, and that the numerical
discretization associated with (51) only assures that no linear dispersion is present. However,
one may achieve better approximation to a shock wave by reducing the discretization. In
figure 4, we show results for two spatial and temporal discretizations. We chose �x = 0.025
which then implies �t = �x = 0.025, and for the lower right panel we use half the grid
size �x = 0.0125 which implies �t = 0.0125. These two discretizations correspond to
α2 = −C(uxxt ) = 0.000 73 and α2 = 0.000 18, respectively. However, as discussed above,
the better approximation of a shock wave for α2 = 0.000 18 is not due to α2 being smaller but
simply due to the finer discretization applied.

Whereas the parameter α2 usually is motivated on physical grounds as a length scale
over which fluctuations are averaged out (see, for example, [15]), the parameter α2 arises
here solely through the numerical discretization scheme chosen. For example, for the
parameters chosen to obtain figure 4 we obtain α2 = 0.000 73 ≈ �x2 for the coarse grid and
α2 = 0.000 18 ≈ (�x/2)2 for the finer grid. Hence the parameter α2 cannot be interpreted
solely as a length scale over which smoothing takes place since in the finer grid there are no
grid points on that scale.

The link between regularization procedures such as Helmholtz regularization and
numerical schemes had been studied before, for example in [12]. However here we achieve
an α-regularization with an explicit scheme.

4. Summary

We have investigated different numerical schemes to discretize the Burgers equation (1).
Usually either artificial viscosity is added or upwinding methods are employed to control
the problems arising with the steep gradients [11, 19]. In contrast, we have focused here
on dispersive regularizations. In particular we analysed second-order discretizations which
are symmetric in time and space for small amplitude solutions. We analysed the numerical
discretizations of the Burgers equation by means of backward error analysis and derived the
respective associated modified equations up to O(�x4,�t4, µ2�x2, µ2�t2).

The discretization generically generates the Korteweg–de Vries equations as its
corresponding modified equation at O(µ�x2, µ�t2). In a numerical simulation this causes
an arbitrary smooth initial condition to evolve into a train of solitary waves which then
subsequently interact (up to this asymptotic order) elastically in a periodic domain; the
additional dispersive linear and nonlinear terms in (17) are a small perturbation of the
integrable Korteweg–de Vries equation. We illustrate this in figure 5 where we show the
temporal evolution of an initial bump. We chose �x = 0.16 and �t = 0.12 and used a
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Figure 5. Snapshot of u(x, t) at t = 2700 for an arbitrary initial condition u(x, t = 0) =
0.25sech(0.2(x − L/2)) where L = 80 is the box length. Equation parameters were µ = 0.1 and
c = 1. We used �t = 0.1.

standard semi-implicit Crank–Nicolson scheme with a = b = 1, d = 0 and s = z = 1 and
y = 0. This particular scheme does not have the KdV equation as its modified equation up to
O(�x4,�t4, µ2�x2, µ2�t2) since, for example, y �= z. We employ again periodic boundary
conditions. The initial condition disintegrates—as expected for the KdV equation—in a train
of solitary waves which subsequently elastically interact. Hence, a finite discretization �t and
�x generates linear dispersion at leading order which balances the nonlinear steepening.

Our main concern in this paper, however, were special discretization schemes which
use higher-order terms of the modified equations to achieve either more accurate behaviour
of linearly dispersive regularization or a different type of regularization which supports
approximations to shock solutions rather than solitary waves. We found discretization schemes
such that the modified equation is the KdV equation up to O(�x4,�t4, µ2�x2, µ2�t2). We
also found that for a particular choice of the discretization scheme the modified equation is the
Camassa–Holm equation. Both equations support solitary waves. These waves are entirely
artificial in the sense that the original system (1) supports shock waves rather than smooth
solutions. The discretization associated with the KdV and the CH equation introduces linear
and nonlinear dispersion. The linear numerical dispersion balances the nonlinear steepening
giving rise to smooth solitary waves. Additionally, we derived numerical schemes whose
modified equation is a proper regularization of the Burgers equation in the sense that its
solutions strongly converge to the weak shock solutions of the full Burgers equation when
α2 → 0. However for the numerical scheme we proposed a small amount of viscosity was
added to stabilize the scheme.

Crucial for our analysis is that the parent system already contains a dispersive term, i.e.
the simple constant advection term cux for the Burgers equation (1). For example, the Burgers
equation without linear advection

∂u

∂t
+ µu

∂u

∂x
= 0,

would not allow for a resubstitution of temporal derivatives. From (21) we infer the modified
equation for this equation to be

∂u

∂t
+ µu

∂u

∂x
+

1

6
µz2�x2uuxxx +

1

2
µy2�x2uxuxx = 0.

The case y = 0 was discussed in [14] where a semidiscretization of the Burgers equation was
studied. It was shown that this ‘nonlinear’ KdV equation behaves for small �x as the KdV
equation.
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